Extracellular ATP does not induce P2X7 receptor-dependent responses in cultured renal- and liver-derived swine macrophages
نویسندگان
چکیده
The P2X7 receptor (P2X7R) is an ATP-gated cation channel that is abundantly expressed in monocytes/macrophages. P2X7R activation by ATP results in various cellular responses including Ca(2+) influx, membrane pore formation, and cytokine secretion. Since P2X7R has low affinity for ATP, high concentrations of ATP (in the mM range) are generally required to activate this receptor in vitro. Functional expression of P2X7R has been detected in monocytes/macrophages obtained from different animal species including humans, rodents, dogs, and bovines, but so far it has not been detected in swine (Sus scrofa). In this study, we investigated the expression and functions of P2X7R in swine macrophages, which were isolated from mixed primary cultures of swine kidney or liver tissue. The P2X7R mRNA and protein expression observed in the swine macrophages was comparable to that seen in a c-myc-immortalized mouse kidney-derived clonal macrophage cell line (KM-1). However, extracellular ATP did not induce P2X7R-dependent sustained Ca(2+) influx, membrane pore formation, or the secretion of the bioactive cytokine interleukin-1β in the swine macrophages, whereas these responses were clearly observed in the mouse KM-1 cells after stimulation with millimolar concentrations of ATP as a positive control. These findings suggest that the ATP/P2X7R pathway is impaired in swine macrophages at least in the culture conditions used in the present study.
منابع مشابه
Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocytes.
Regulation of P2X7 receptor expression is of interest because activation of this receptor by extracellular ATP triggers maturation and release of the pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) in monocytes and macrophages. We report that interferon-gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) synergistically induce P2X7R mRNA and functional responses in the human ...
متن کاملP 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation
P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...
متن کاملExtracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X7receptors.
Mesangial cells undergo cell death both by apoptosis and necrosis during glomerular disease. Since nucleotides are released from injured and destroyed cells in the glomerulus, we examined whether extracellular ATP and its receptors may regulate cell death of cultured mesangial cells. Addition of extracellular ATP (300 μM to 5 mM) to cultured rat mesangial cells for 90 min caused a 5.8-fold incr...
متن کاملP2X7 receptors mediate deleterious renal epithelial-fibroblast cross talk.
Peritubular fibroblasts in the kidney are the major erythropoietin-producing cells and also contribute to renal repair following acute kidney injury (AKI). Although few fibroblasts were observed in the interstitium adjacent to damaged tubular epithelium in the early phase of AKI, the underlying mechanism by which their numbers were reduced remains unknown. In this study, we tested the hypothesi...
متن کاملN-Alkyl-Substituted Isatins Enhance P2X7 Receptor-Induced Interleukin-1β Release from Murine Macrophages
Extracellular adenosine 5'-triphosphate (ATP) activates the P2X7 receptor channel to induce the rapid release of the proinflammatory cytokine, interleukin- (IL-) 1β, from macrophages. Microtubule rearrangements are thought to be involved in this process. Some isatin derivatives alter microtubules and display anticancer activities. The current study investigated the effect of isatin and seven st...
متن کامل